Increasing Seed Yield in Oregon's Annual Ryegrass Crops

THE REAL PROPERTY AND A RE

Nicole P. Anderson, David J. Maliszewski, and Thomas G. Chastain

Iniversity

Introduction

- Annual ryegrass (Lolium mulitiflorum L.) is grown for seed on nearly 50,000 hectares in Oregon's Willamette Valley.
- Tolerates poorly drained, low pH soils.
- Agronomic research, including use of defoliation and plant growth regulators (PGRs), is lacking.
- Prior results from Oregon reported only 10% seed yield increase from trinexapacethyl (TE) PGR (Mellbye et al., 2007).
- Chlormequat chloride (CCC) PGR has not been previously available in the US.
- Effects of spring grazing evaluated in Oregon in the 1970's (Young et al., 1996), but no work has been done since introduction of PGRs.

Annual ryegrass seed crop [JM Hart Photo]

Oregon Grass Seed Yield Trends

Study Objectives

Study I – 2018 & 2019

 Determine whether an interaction between TE and spring defoliation will increase seed yield in 'Gulf' annual ryegrass.

Study II – 2021 & 2022

 Evaluate the effect of the CCC PGR with and without TE on seed yield 'Gulf' annual ryegrass with and without spring defoliation.

Annual ryegrass TE X spring defoliation plots at OSU's Hyslop Research Farm [NP Anderson photo]

Methods

- 'Gulf' seed planted Fall 2017, 2018, 2020, and 2021 at OSU's Hyslop Research Farm near Corvallis, OR.
- 30 cm row spacing
- Plot size was 3.4 m X 13.7 m
- 145 kg N ha⁻¹ applied in spring.
- Defoliation treatments applied with a tractor mounted flail mower.
- PGRs applied with a boom mounted bicycle sprayer powered by CO².
- Seed yield determined with a modified John Deere swather and Hege small plot combine.

Planting annual ryegrass in Oregon [NP Anderson Photo]

Study I - Design and Treatments

Plots were arranged in a randomized complete block with a split plot arrangement and four replications.

Defoliation (Main Plots)

Control (no mowing) Single cutting (BBCH 31) Triple cutting (BBCH 31 + 2x @ BBCH 32)

TE Plant Growth Regulator (Subplots)

Control (no PGR) 200 g TE ha⁻¹ @ BBCH 32 400 g TE ha⁻¹ @ BBCH 32 600 ai TE ha⁻¹ @ BBCH 32

Spring defoliation of annual ryegrass (NP Anderson photos)

Results – Seed Yield

Significant seed yield interactions between TE + defoliation in both 2018 (P=0.0497) and 2019 (P=0.0002).

Results - Seed Number and Seed Weight

In 2018, there was an interaction effect on seed number (P=0.0296) but not seed weight (P=0.1468).

Results - Seed Number and Seed Weight

In 2019, there was an interaction effect on seed number (P=0.0202) and seed weight (P=0.0000).

Results

Study II - Design and Treatments

Plots were arranged in a randomized complete block with a split plot arrangement and four replications.

Defoliation (Main Plots)

Control (no defoliation) Double cutting (BBCH 31 + BBCH 32-33)

Plant Growth Regulator (Subplots)

Control (no PGR) 400 g TE ha⁻¹ @ BBCH 32 600, 1200, 1800 g CCC ha⁻¹ @ BBCH 32 600, 1200, 1800 g CCC ha⁻¹ + 400 g TE ha⁻¹@ BBCH 32

Annual ryegrass defoliation plots (NP Anderson photo)

Results – Seed Yield (2021)

Significant interaction of TE + defoliation for seed yield of 'Gulf' annual ryegrass, 2020 (P=0.0294).

Results – Seed Yield (2022)

Significant interaction of TE + defoliation for seed yield of 'Gulf' annual ryegrass, 2022 (P=0.0000).

Conclusions

- Oregon's annual ryegrass seed yields can be increased with increased agronomic management.
- The interaction between spring defoliation and 400-600 g TE ha⁻¹ significantly increased seed yield by increasing seed number.
- CCC does not appear to provide enough of an advantage.
- Changing the partitioning of carbon in the spike by reducing spike length. More C put towards seed production and fill?
- Shattering differences could be involved. Small compact spikes are less likely to shatter compared to large spikes with large spaces between spikelets.

Annual ryegrass PGR plots (DJ Maliszewski photo)

Questions?

BAC