PHENOTYPINOOF HERBAGE SEED FIELD PLOTS USING UAV-MOUNTED SENSOR SYSTEM

Anders K. Mortenseń, Jacob G. Gyldengren², Birte Boel², and René Gislun², ¹Aarhus University, Department of Electrical and Computer Engineering, 8200 Aarhus N, Denmark ²Aarhus University, Department of Agroecology, 4200Slagelse, Denmark

IHSG 2023 | RENÉ GISLUM 14 JUNE 2023 | ASSOCIATE PROFESSO

WHY PHENOTYPING

We have used phenotyping for years, but the use and implementation of sensors and AI have made agriculture interesting for some students, engineers, etc.

Phenotyping with a focus on the prediction of %N, N uptake in kg ha $^{-1}$ and dry matter production in tons ha $^{-1}$.

IHSG 2023 RENÉ GISLUM 14 JUNE 2023 ASSOCIATE PROFESSO

IHSG 2023 RENÉ GISLUM 14 JUNE 2023 ASSOCIATE PROFESSOR

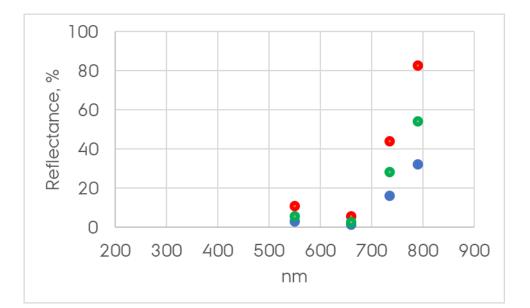
DATA

eBee UAV mounted sequoia camera with four monochrome sensors: green (550 nm ± 20 nm), red (660 nm ± 20 nm), red-edge (735 nm ± 5 nm) and near-infrared (790 nm ± 20 nm).

- Eighteen different crop indices were calculated Weather data was growing degree days, precipitation, and global radiation.
- A total of 4 (narrow bands) + 18 (crop index) + 9 (weather data) = 31 variables

Va ria ble	Ν	Average	Minimum	Maximum
%N,% in DM	1024	2.72	0.21	5.40
DM, tons ha ⁻¹	1024	5.23	0.66	15.8
Kg N, kg ha ⁻¹	1024	133	10	373

IHSG 2023 RENÉ GISLUM 14 JUNE 2023 ASSOCIATE PROFES

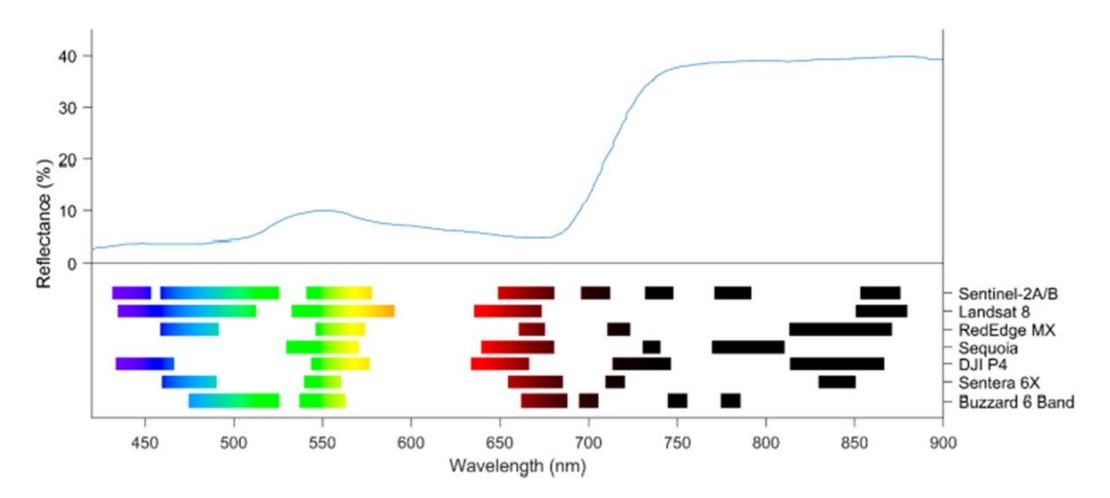


UNDERSTANDING CROP INDEX

	nm	Minimum	Maximum	Average
Green	550	2.92	11.0	5.78
Red	660	1.30	5.58	2.61
Rededge	735	16.4	44	28
NIR	790	32	83	54

550 measurements

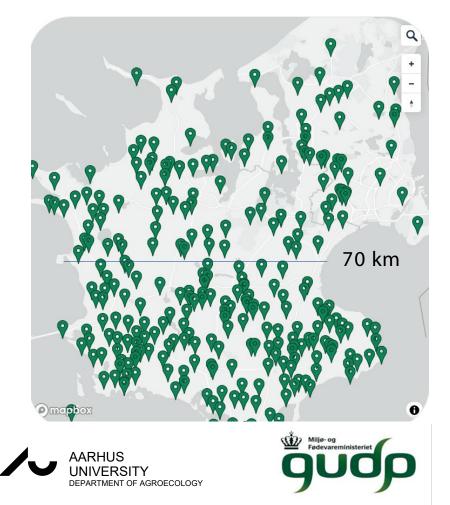
NDVI=(NIR-Red)/(NIR+Red) NDRE=(NIR-Rededge)/(NIR+Rededge) Rededge chlorophyll index C Irededge=(NIR/rededge)-1

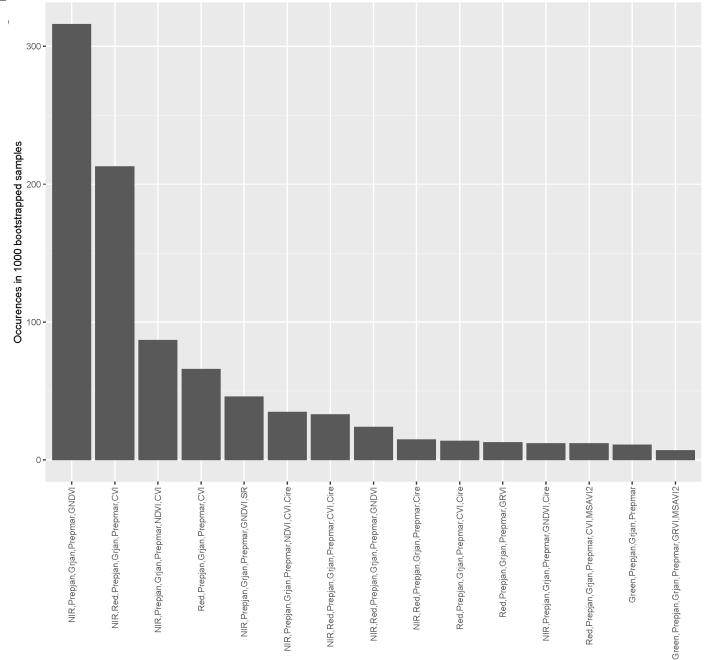


DIFFERENCES BETWEEN CAMERAS

RESULTS

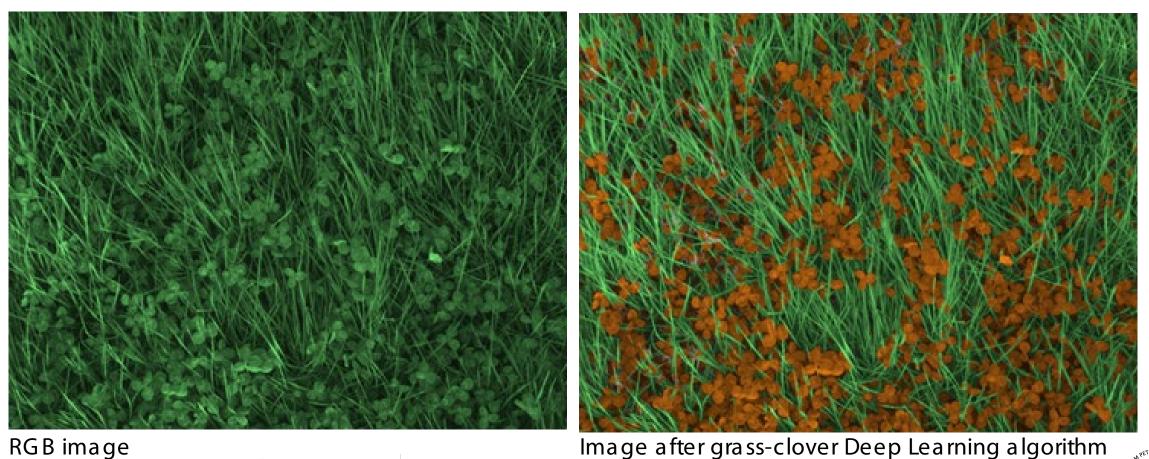
Va ria ble	Model	Training set		Validation set		Test set		
		#PC	R ²	RMSEC	R ²	RMSECV	R ²	RMSEP
%N	SVM	747	0.85	0.28	0.78	0.35	0.75	0.36
Kg N	SVM	654	0.70	26	0.57	31	0.52	33
DM	SVM	597	0.82	0.99	0.73	1.2	0.75	1.12


IHSG 2023 RENÉ GISLUM 14 JUNE 2023 ASSOCIATE PROFESSOR



ADVANCED RESULT

The best results were obtained with a combination of weather and sensor data.



15 most occuring variable combinations in 1000 models - Biomass

Fitted variable combinations

PHENOTYPING GRASSLOVER ALGORITHM

RGB image

IHSG 2023 14 JUNE 2023

RENÉ GISLUM ASSOCIATE PROFESSOR

CONCLUSION AND TAKE HOME MESSAGE

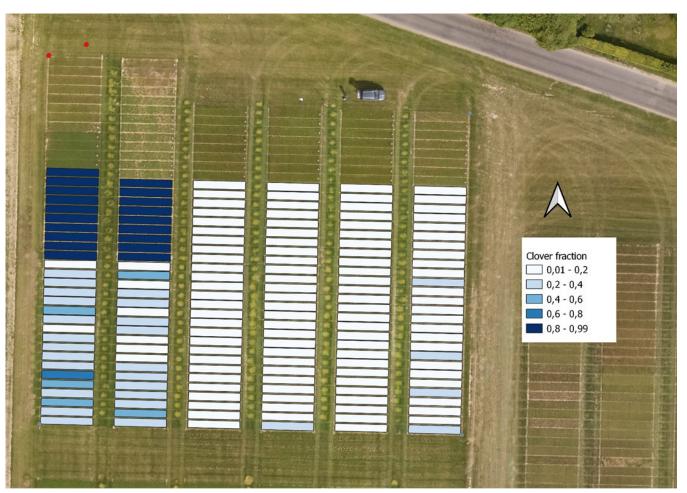
Is an error in dry matter production of ~ 1.12 tons ha⁻¹ satisfying? this can only be answered by the farmer.

We suggest that local models for specific fields, species, and/or areas are developed to reduce the error that undisputedly will be part of a global model.

CLOVERGRASS FRACTION

Sensor:

MicaSense RedEdge MX


Analysis:

- Semantic segmentation using FCN-8 trained on UAV images¹
- Pseudo RGB image created using only red channel (668 nm)
- #{clover pixels} • clover fraction = $\frac{\#\{clover plxels\}}{\#\{clover plxels\} + \#\{grass plxels\}}$ • grass fraction = $\frac{\pi}{\#\{clover pixels\} + \#\{grass pixels\}}$ #{clover pixels}

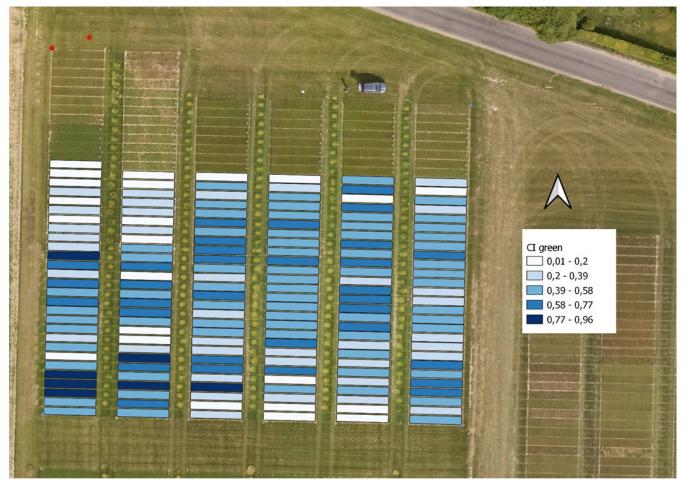
¹Larsen et al. (2018). Autonomous mapping of grass-clover ratio based on unmanned aerial vehicles and convolutional neural networks . In preceedings of International Conference on Precision Agriculture.

IHSG 2023 RENÉ GISLUM ASSOCIATE PROFESSOR 14 JUNE 2023

VEGETATION INDICES

Sensor:

• Mica Sense RedEdge MX


Analysis:

- Normalized difference vegetation index:
 - $NDVI = \frac{NIR red}{NIR + red}$
- Normalized difference red edge index:
 - $NDRE = \frac{NIR red \ edge}{NIR + red \ edge}$
- Green Chlorophyll Index:

•
$$CI_{green} = \frac{NIR}{green} - 1$$

• Red-Edge Chlorophyll Index:

•
$$CI_{red\ edge} = \frac{NIR}{red\ edge} - 1$$

ASSOCIATE PROFESSOR

